
EECS 151/251A: FALL 2017—MIDTERM 2 1

University of California
College of Engineering

Department of Electrical Engineering
and Computer Sciences

J. Rabaey

G. Alexandrov, N. Narevsky, V. Iyer MoWe 4-5:30pm
 Mo, Oct. 2, 6:00-7:30pm

EECS 151/251A: SPRING 17—MIDTERM 2

SOLUTIONS

NAME

 Last First

SID

 Problem 1 (16):
 Problem 2 (17):
 Problem 3 (15):

Total (48)

EECS 151/251A: FALL 2017—MIDTERM 2 2

[PROBLEM	1]	Logic	and	Wire	optimization		(16	+	1	Pts)	
	

a) A	designer	at	a	memory	company	 is	 in	charge	of	developing	the	circuitry	to	drive	the	wordline	of	an	SRAM	
module	as	fast	as	possible.	An	initial	design	is	shown	below.	It	consists	of	an	inverting	driver	and	a	wordline	
wire	connecting	to	256	SRAM	cells.		The	contribution	of	each	cell	to	the	wordline	can	be	modeled	as	a	series	
resistance	RC	of	 5	W	 	 and	 a	 load	 capacitance	CC	of	 2fF.	 Assume	 at	 first	 that	 the	 driver	 is	 a	minimum-sized	
inverter	with	an	input	capacitance	CD	of	5fF	and	a	driver	resistance	RD	of	10	KW.	You	may	assume	that	g	=	1.	
In	a	first	step,	determine	the	worst-case	propagation	delay	of	 the	circuit	 (from	 In	 to	any	cell	connected	to	
the	wordline)	(5	Pts)	
	

	
	
	
	
															tp	=	0.69	Rd	*	(Cd	+	256	Cc)	+	0.38	*	(256	*	Rc)	*	(256*Cc)	=	3.57	+	0.25	nsec	=		3.82	nsec		
	
1	pt	–	ln(2)	
1	pt	–	(Cd+256Cc)	
1	pt	–	distributed	wire	model	(e.g.	0.38)	
2	pt	–	correct	wire	delay	(proportional	to	2562)	
	
	
	
	
	

b) One	way	to	reduce	the	delay	is	to	optimize	the	driver.	Determine	the	optimal	number	of	stages	to	minimize	
the	delay.		The	function	of	the	driver	cannot	be	changed	–	that	is,	it	has	to	remain	inverting.	(2	Pts)	

	
														F	=	(256	*	2	fF)	/	(5	fF)	=	102.4	
	
														Optimal	#	of	stages	=	log4(F)	=	3.34	
	
														Given	that	the	circuit	has	to	remain	inverting,	3	stages	is	the	optimal	answer	
	
1	pt	–	log4(F)	calculation	
1	pt	–	3	stages	
	
	
	
	
	

WL	

Driver	

RC	

CC	

In	

cell	 cell	 cell	 cell	 cell	cell	

EECS 151/251A: FALL 2017—MIDTERM 2 3

c) For	 the	 chosen	 number	 of	 stages,	 size	 each	 stage	 so	 that	 the	 delay	 is	minimized,	 and	 determine	 the	 new	
value	of	the	delay.	(3	Pts)	

	
	
													Optimal	sizing	factor:		f	=	F^(1/3)	=	4.68	
													Hence:	stage	1:	1;	stage	2:	4.68;	stage	3:	21.88	
	
													Delay:	Term	2	(disturbed	array)	is	unchanged	.	The	first	term	(driver)	is	reduced	to:	
													0.69*	3	*	10kOhm	*	(5	+	4.68	*	5)	fF	=	0.59	nsec	
	
											The	total	delay	is:	0.59	nsec	+	0.25	nsec	=	0.84	nsec	
	
										While	the	first	factor	still	dominates	–	the	are	now	almost	equal	
	
2	pt	–	f	and	sizing	
1	pt	-	delay	
	
	
	
	

d) If	you	did	the	sizing	right,	you	may	observe	that	the	overall	delay	is	now	dominated	by	the	memory	array.	Our	
designer	has	come	up	with	two	approaches	to	address	this.	 In	a	 first	approach,	he	decides	to	drive	the	WL	
form	both	sides	(see	Figure).	Determine	how	this	 impacts	the	worst-case	delay	and	determine	the	resulting	
value.	To	make	things	easy,	keep	the	drivers	the	same	as	in	part	c)	(3	Pts)	

	
	
	
	
Driving	from	both	sides	reduces	the	“effective	distributed	length”	of	the	memory	array	by	a	factor	of	2.	In	a	
distributed	system	this	effectively	reduces	the	delay	by	a	factor	of	4.	The	overall	delay	is	now:	

	
tp	=	0.59	nsec	+	0.25nsec/4	=	0.65	nsec	
	
1	pt	–	driver	delay	
2	pt	–	wire	delay	reduced	by	factor	of	4	
	
	
	
	
	
	
	
	

	

WL	

Driver	

RC	

CC	

In	

cell	 cell	 cell	 cell	 cell	cell	

Driver	

In	

EECS 151/251A: FALL 2017—MIDTERM 2 4

e) Another	approach	that	he	is	considering	is	to	put	a	metal	wire	(called	a	bypass)	with	lower	resistance	(located	
on	 the	 higher	 levels	 of	 the	 interconnect	 stack)	 in	 parallel	with	 the	wordline	 (see	 Figure).	 The	 bypass	wire	
connects	to	the	wordline	every	64	cells	 (4	connections	 in	total,	or	one	connection	every	64	cells).	You	may	
assume	that	the	capacitance	of	bypass	wire	per	cell	is	equal	to	the	wordline,	but	that	its	resistance	is	10	times	
lower.	Determine	again	the	impact	on	delay.	(3	Pts)	

	

	
	
	
The	 longest	 connection	now	would	 be	 3	 *	 64	 cells	 over	 the	bypass	wire	 +	 32	memory	 cells.	 This	 translates	 into	 a	
delay:	
0.38	*	(192	*	(Rc/10)	*	192*	Cc)	+	(32*	Rc)	*	32*Cc)	=	0.018	nsec	
	
The	total	delay	is	now	:	0.61		nsec	
	
	
2	pt	–	correct	critical	path	
1	pt	–	delay	calculation	
	
	
	
	
	
	
	

f) Bonus	question:		Since	most	of	the	wordlines	of	a	memory	are	always	at	0,	and	only	one	line	goes	high	with	
very	cycle,	it	seems	that	the	low-to-high	transition	is	the	most	important	one	and	making	that	one	faster	is	
the	primary	goal.	Discuss	qualitatively	how	you	would	change	the	driver	characteristics	to	exploit	this	
feature.		
(1	Pt)	
	

		Speed	up	the	0->1	transition	by	making	the	PMOS	of	the	final	driver	stage	larger	than	the	normal	ratio,	actually	
reducing	the	switching	threshold	of	the	device.	
	

	
	
	
	

	
	
	
	
	
	
	

WL	

Driver	

In	

cell	 cell	 cell	 cell	 cell	cell	

Bypass	wire	

EECS 151/251A: FALL 2017—MIDTERM 2 5

[Problem 2] Logical Effort (17 Pts)

Problem 2: Logical Effort Solutions
a) (4 pts) Implement the function 𝑂𝑢𝑡 = 𝐴 ⋅ 𝐵 + 𝐶 ⋅ 𝐷 + 𝐴 ⋅ 𝐷 ⋅ 𝐸 + 𝐹 with a complex static CMOS
gate. Assuming that for this process 𝑅. =

/
0
∗ 𝑅2 (i.e. for the same width, a PMOS has one third the resistance

of an NMOS). Size your gate such that the worst-case pull up resistance is equal to the worst-case pull-down
resistance, assuming that the minimum transistor width is 1.

1 pt – correct pull-up functionality
1 pt – correct pull-down functionality
1 pt – correct pull-up sizing (multiple answers)
1 pt – correct pull-down sizing (multiple answers)
½ pt taken off if inverter had transistor size 1/3
1 pt taken off if p-n ratio was flipped

b) (3 pts) What is the logical effort of this gate from the A, C and E inputs?

For input A: 𝐿𝐸4 = 12 ∗ 𝐶 ∗ 𝑅

4 ∗ 𝐶 ∗ 𝑅 =
21

4 = 5.25

For input C: 𝐿𝐸4 = 10 ∗ 𝐶 ∗ 𝑅

4 ∗ 𝐶 ∗ 𝑅 =
10

4 = 2.5

For input E: 𝐿𝐸4 = 13 ∗ 𝐶 ∗ 𝑅
4 ∗ 𝐶 ∗ 𝑅 =

13
4 = 3.25

1 pt each LE

EECS 151/251A: FALL 2017—MIDTERM 2 6

c) (2 pts) Using the same gate as previous, connect the A and B inputs together without resizing any of the
transistors. What is the logical effort for this new input? Calculate the logical effort for both a rising transition
as well as a falling transition

Rising transition: 𝐿𝐸 = 	31 ∗ 𝐶 ∗ 𝑅 4 ∗ 𝐶 ∗ 𝑅 = 	

31
4 = 7.75

Falling transition: 𝐿𝐸 = 	31 ∗ 𝐶 ∗ (7𝑅/8) 4 ∗ 𝐶 ∗ 𝑅 = 	
15

4 = 6.78125

1 pt – correct capacitance
1 pt – correct pull-up resistance

d) (4 pts) Using the gate from part a) as well as other standard logic gates, what is the path effort of the
following chain of gates? All gates are also implemented in this same technology with 𝑅. =

/
0
∗ 𝑅2.

𝐿𝐸C = 3.25, 𝐿𝐸242DE = 7/4, 𝐿𝐸242DF = 13/4, 𝐿𝐸2GHE = 5/4, 𝐿𝐸2GH0 = 6/4, 𝐵 = 4
𝑃𝐸 = 𝐿𝐸C ∗ 𝐿𝐸242DE ∗ 𝐵 ∗ 𝐿𝐸2GHE ∗ 𝐿𝐸J2K ∗ 𝐿𝐸242DF ∗ 𝐿𝐸2GH0 ∗ 𝐹

= 3.25 ∗
7
4 ∗ 4 ∗

5
4 ∗ 1 ∗

13
4 ∗

6
4 ∗ 120

= 16635.6

1 pt – all LE. -1/4 for each one wrong
1 pt – correct branching
1 pt – correct PE
1 pt - calculation

e) (1 pts) What is the EF/stage that minimizes the delay?
𝐸𝐹 = 	 16635.6L = 4.008 ≈ 4

EECS 151/251A: FALL 2017—MIDTERM 2 7

f) (3 pts) Compute the sizes for the gates in the chain to minimize the delay
Size Value
a 1.23
b 0.702
c 2.24
d 8.96
e 11.02
f 29.33
𝑎
1 ∗ 𝐿𝐸C = 𝐸𝐹 => 𝑎 =

4
3.25 = 1.23

𝑏
𝑎 ∗ 4 ∗ 𝐿𝐸242DE = 𝐸𝐹 => 𝑏 =

4 ∗ 1.23
1.75 ∗ 4 = 0.702

𝑐
𝑏 ∗ 𝐿𝐸2GHE = 𝐸𝐹 => 𝑐 =

4 ∗ .702
1.25 = 2.24

𝑑
𝑐 ∗ 𝐿𝐸J2K = 𝐸𝐹 => 𝑑 =

4 ∗ 2.24
1 = 8.96

𝑒
𝑑 ∗ 𝐿𝐸242DF = 𝐸𝐹 => 𝑒 =

4 ∗ 8.96
3.25 = 11.02

𝑓
𝑒 ∗ 𝐿𝐸2GH0 = 𝐸𝐹 => 𝑓 =

4 ∗ 11.02
1.5 = 29.33

𝐶VWXY
𝑓 ∗ 𝐿𝐸J2K = 𝐸𝐹 =>

120
29.33 ∗ 1 ≈ 4	 ∴

½ pt each size

EECS 151/251A: FALL 2017—MIDTERM 2 8

[Problem 3] Processor Architecture (15 pts)

a) (3 pts) Translate the following snippet of C into RISC-V assembly. Assume that ‘str’ is stored in memory
and register x10 contains its base address. Recall that the char datatype is 1 byte. It is OK if you manipulate the
str pointer itself.

char* str;
for (i = 0; str[i] != 0; i++) {
 str[i] = str[i] - 32;
}

There are a few ways to compile this snippet; here's one.

loop: lb x1, 0(x10) ; str[i]
beq x1, x0, done ; str[i] != 0
addi x1, x1, -32 ; str[i] - 32
sb x1, 0(x10) ; str[i] = str[i] - 32
addiu x10, x10, 1 ; advance str pointer
jal loop
done: nop

1 pt – branch on loaded byte = 0, jump for loop
1 pt – addi -32 and store back into mem
1 pt – pointer arithmetic

b) (2 pts) Assume these instructions are executed on a single cycle RISC-V processor with asynchronous read
IMEM, DMEM, and register file. The DMEM and register file have synchronous writes. You can assume that
char* str = {'a', '\0'} (i.e. the string is just a single character followed by a null terminator).

How many clock cycles does your code from part a) take to execute? What is the CPI (clock cycles per
instruction)?

Since this is a single-cycle processor each instruction takes a single cycle. Since str is only 1 character long,
lines 1-6 will be executed, then lines 1-2, after which the snippet is complete. The sequence of instructions
takes 8 clock cycles to complete and the CPI is 1.0.

1 pt – # cycles match code in (a)
1 pt – cpi = 1

EECS 151/251A: FALL 2017—MIDTERM 2 9

c) (3 pts) Let's extend the RISC-V ISA with a custom instruction called ‘sbi’.

sbi rs1, rs2, imm will perform Mem[Reg[rs2]] <= Reg[rs1] + imm

What additional hardware and control signals are needed to implement this instruction? (describe verbally,
diagram not needed) The added hardware should be minimal. Please be concise.

• The ALU can be used to compute the DMEM write data (Reg[rs1] + imm)
• The DMEM address can be fed straight from Reg[rs2]
• The only new hardware needed are two muxes

o To drive the DMEM write data from the ALU output rather than Reg[rs2]
o To drive the DMEM address from Reg[rs2] rather than the output of the ALU

• Need two 1-bit control signals for these muxes which go high when sbi is being executed

1 pt – no new adder HW
2 pt – 1 for each mux

d) (2 pts) Write the C snippet in assembly again, but using the sbi custom instruction. You can just rewrite the
lines of your original code that would change.

Replace lines 3 and 4 from part a) with sbi x1, x10, -32

e) (5 pts) In the fabrication of any digital circuit, there may be manufacturing defects. One type of defect
involves a signal being shorted to GND or VDD (stuck-at-zero or stuck-at-one). For the following stuck signals,
specify the RISC-V instructions that will no longer work. Assume the following datapath and control signals.

EECS 151/251A: FALL 2017—MIDTERM 2 10

i. WBSel[1:0] = 2’d1

Memory read operations won't work: lw, lh, lhu, lb, lbu.

Also the link operation of jumps won't work: jal, jalr.

1 pt – loads
1 pt – jumps

ii. ASel is stuck-at-zero

auipc will no longer work. branch and jal address calculations won't work.

jalr will still work since the new PC is calculated as rs1 + imm.

1 pt – auipc
1 pt – branch and jal
½ pt taken off if jalr isn’t specified as working

iii. BSel is stuck-at-one

Any instructions that use rs2 in the ALU won't work. This includes all R-type instructions. The explicit list is:
add, slt, sltu, and, or, xor, sll, srl, sub, sra.

Note that branches will still work as the branch computation unit is separate from the ALU. Also note stores
will still work since Reg[rs2] is directly passed to the DMEM.

To get credit for this question, you should specify the explicit instruction list or claim that R-type instructions
in general won’t work.
	
1	pt	–	R-type	instructions	

